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Lecture 18

Dynamic Current Source Matching
Charge Redistribution DACs



Current Steering DAC




Sub-radix Array

k-slice sub-radix array
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Typically 2.1<8<2.5

ZR

Termination resistor must be selected so that same attenuation is maintained

Often only the first n; MSB “slices” will be sub-radix

Effective number of bits when using sub-radix array will be less than k

Can be calibrated to obtain very low DNL (and maybe INL) with small area



Current Steering DAC
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Current Steering DAC
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Current Steering DAC with Supply

Independent Biasing
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If transistors on top row are all matched, 1,=Vzg/R

Thermometer coded structure (requires binary to thermometer decoder)
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Provides Differential Output Currents



Current Current Steering DAC with
Supply Independent Biasing
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Current Steering DAC with current output,
buffered output, resistor load




Matching is Critical in all DAC Considered

VDD VDD

Vix = Vix 4_—

a1l gl

Unary Cells Not shown

Unary Cells Not shown

Obtaining adequate matching remains one of the major challenges facing the designer!



Dynamic Current Source Matching
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 Correct charge is stored on C to make all currents equal to Iz,
» Does not require matching of transistors or capacitors

* Requires refreshing to keep charge on C

* Form of self-calibration

 Calibrates current sources one at a time

« Current source unavailable for use while calibrating

» Can be directly used in DACs (thermometer or binary coded)

« Still use steering rather than switching in DAC

Often termed “Current Copier” or “Current Replication” circuit



Dynamic Current Source Matching
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Extra current source can be added to facilitate background calibration



Charge Redistribution Principle

Vs
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Cy /K\ - C (Vk —Vy ) = Qy

Charge on capacitors is preserved if there is no loss element on any of the capacitors
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Thus for any time-dependent voltages V,,...V,
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Charge Redistribution Principle
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All capacitors will have some gradual leakage thus causing Q; to change

How long will charge on a simple M-SiO,-M capacitor be retained in a standard
semiconductor process?
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SiO, Metal

Decades !



DAC Architectures

XN 7 DAC I
xOUT
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Charge Redistribution 5/ i
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Vrer L During phase ¢,, C¢ is discharged
and the remaining capacitors are

i TCLK
. 3 3 3 charged to either Vg or OV
1_3_ depending upon Boolean input —
total charge is denoted as Qg
§ 5 5 § During phase ¢,, all charge on
input-connected capacitors is
¢1A__| transferred to C.

P2n DAC output voltage is v,,, = s

F



DAC Architectures

XINT> DAC

Charge Redistribution
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During phase ¢,, the previous
output voltage is sampled on Cy

During phase ¢,, the Op Amp has
feedback through C, thus
establishing a null-port at the input
so voltage on selected sampling
capacitors is Vier

C, does some good things
(mitigates Vg, 1/f noise and finite gain errors)



Consider basic charge redistribution circuit
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Clocks are complimentary non-overlapping



Basic charge redistribution circuit

4 During phase o,
AAZ Q1 =CViN
C
¢1 + \|

ViN — 7| \ v Vour QCF =0
¢2 / J/ During phase o,
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Serves as a noninverting amplifier
Gain can be very accurate
Output valid only during @,



Another charge redistribution circuit
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Another charge redistribution circuit
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During phase o,

Qu1 =CViN
Qcr =0
During phase o,
—Qp
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F
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Vi Cr

Serves as a noninverting amplifier
Gain can be very accurate
Output valid only during @,



Another charge redistribution circuit
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Another charge redistribution circuit
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During phase ¢,

Q1 =0
Qcr =0

During phase o,
Qu2 =CViN
Qcr = CrVour
Qcr = —Qu

Vour __ C
Vi Cr
Serves as a inverting amplifier

Gain can be very accurate
Output valid only during ®,



Charge Redistribution DAC
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Another Redistribution DAi
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During phase ¢, selected switches setto Vgee Qger :VREFiZnO:diCi :VREFiZn;,di ;i

During phase ¢, all switches connected to GND

Charge Qg1 Is all redistributed among the capacitors
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Noise in DACs

Resistors and transistors contribute device noise but
what about charge redistribution DACs ?
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Noise in DACs

Resistors and transistors contribute device noise but
what about charge redistribution DACs ?

Noise In resistors:

Uh(® R

.——@——«/v\n—.

Noise spectral density of V(1) at all frequencies S = 4kTR
This is white noise !

k: Boltzmann’s Constant
T. Temperature in Kelvin

k=1.38064852 x 1023 m? kg s2 K1
At 300K, kT=4.14 x104



Noise in DACs

Resistors and transistors contribute device noise but
what about charge redistribution DACs ?

Noise In linear circuits:

Vn(t) @ T(s) _‘UotT

Due to any noise voltage source:

S..=S,T(jw)

2

U =\Js.a=| [ sT(io)dr

=0
f=0




Example: First-Order RC Network

R

Vour
Vin C. ~
1
T(s)=
1+RCs
S -—4kTR L
g 1+(RCw)
V = OOS df = { AKTR df
1+wRC



Example: First-Order RC Network

Vour 0
‘1 S J 4KTR
~ w0 1+ wRC
f=0

From a standard change of variable with a trig identity, it follows that

v = [T a= "
=~ Vo C

« The continuous-time noise voltage has an RMS value that is independent of R
« Noise contributed by the resistor is dependent only upon the capacitor value C

« This is often referred to at KT/C noise and it can be decreased ata given T
only by increasing C



RMS Noise inuV

RMS Noise in uV
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Example:

Switched Capacitor Sampler

U R C.m

—— Vn(kT)

—— Vin(kT)

T

Track mode Hold mode




Example:

Switched Capacitor Sampler

U R C.m

—— Vn(kT)

—— Vin(kT)

T

Track mode Hold mode




Example: Switched Capacitor Sampler

T is the period of the sampler
A

Un(1)

e . /\WAMA NI

(m 2T  |(m-1)T mT  (M+)T  (M+2)T  (m+3)T (M+4)T
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(m-2)T  (m-1)T mT  (M+)T  (M+2)T  (m+3)T (M+4)T

V.,(mT) is a discrete-time sequence obtained by sampling continuous-time
noise waveform



Characterization of a noise sequence
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Theorem If V() is a continuous-time zero-mean noise source
and <V(KT)> is a sampled version of V(t) sampled at times T, 2T, ....
then the RMS value of the continuous-time waveform is the same as
that of the sampled version of the waveform. This can be expressed

as UV =9

RMS RMS

Theorem If V(t) is a continuous-time zero-mean noise signal and
<P(kT)> is a sampled version of V(t) sampled at times T, 2T, .... then the
standard deviation of the random variable V(kT), denoted as GV

satisfies the expression 5 = (] =
v RMS RMS



Example: Switched Capacitor Sampler
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k: Boltzmann’s constant
Track mode Hold mode

T: temperature in Kelvin






