EE 505

Lecture 18

Dynamic Current Source Matching Charge Redistribution DACs

Current Steering DAC

Sub-radix Array

Typically $2.1 < \theta < 2.5$

Termination resistor must be selected so that same attenuation is maintained Often only the first n₁ MSB "slices" will be sub-radix

Effective number of bits when using sub-radix array will be less than k

Can be calibrated to obtain very low DNL (and maybe INL) with small area

Current Steering DAC

Review from Last Lecture

Current Steering DAC

Current Steering DAC with Supply Independent Biasing

If transistors on top row are all matched, $I_X=V_{REF}/R$

Thermometer coded structure (requires binary to thermometer decoder)

$$I_{A} = \left(\frac{V_{REF}}{R}\right) \sum_{i=0}^{N-1} d_{i}$$

Provides Differential Output Currents

Review from Last Lecture Current Steering DAC with Supply Independent Biasing

If transistors on top row are binary weighted

$$I_{A} = \left(\frac{V_{REF}}{R}\right)_{i=0}^{n-1} \frac{d_{i}}{2^{n-i}}$$

Provides Differential Output Currents

Current Steering DAC with current output, buffered output, resistor load

Matching is Critical in all DAC Considered

Obtaining adequate matching remains one of the major challenges facing the designer!

Dynamic Current Source Matching

- Correct charge is stored on C to make all currents equal to I_{REF}
- Does not require matching of transistors or capacitors
- Requires refreshing to keep charge on C
- Form of self-calibration
- Calibrates current sources one at a time
- Current source unavailable for use while calibrating
- Can be directly used in DACs (thermometer or binary coded)
- Still use steering rather than switching in DAC

Often termed "Current Copier" or "Current Replication" circuit

Dynamic Current Source Matching

Extra current source can be added to facilitate background calibration

Charge Redistribution Principle

$$\sum_{i=1}^{k} C_{i} \left(V_{k} - V_{X} \right) = Q_{X}$$

Charge on capacitors is preserved if there is no loss element on any of the capacitors

$$\sum_{i=1}^k C_i V_i - V_X \sum_{i=1}^k C_i = Q_X$$

Thus for any time-dependent voltages $V_1, ... V_k$

$$V_X = \frac{\sum_{i=1}^k C_i V_i - Q_X}{\sum_{i=1}^k C_i}$$

Charge Redistribution Principle

All capacitors will have some gradual leakage thus causing Q_T to change

How long will charge on a simple M-SiO₂-M capacitor be retained in a standard semiconductor process?

DAC Architectures

DAC Architectures

Consider basic charge redistribution circuit

Clocks are complimentary non-overlapping

Basic charge redistribution circuit

During phase φ₁

$$Q_{\phi 1} = CV_{IN}$$

$$Q_{CF} = 0$$

During phase φ₂

$$\frac{Q_{\phi 1}}{C_F} = V_{OUT}$$

$$\frac{CV_{IN}}{C_{F}} = V_{OUT}$$

$$\frac{V_{OUT}}{V_{IN}} = \frac{C}{C_F}$$

Serves as a noninverting amplifier Gain can be very accurate Output valid only during Φ_2

During phase φ₁

$$Q_{\phi 1} = CV_{IN}$$

$$Q_{CF} = 0$$

During phase φ_2

$$\frac{-Q_{\phi 1}}{C_F} = V_{OUT}$$

$$\frac{-CV_{IN}}{C_F} = V_{OUT}$$

$$\frac{V_{OUT}}{V_{IN}} = -\frac{C}{C_F}$$

Serves as a noninverting amplifier Gain can be very accurate Output valid only during Φ_2

During phase φ₁

$$Q_{\phi 1} = 0$$

$$Q_{CF} = 0$$

During phase φ₂

$$Q_{\phi 2} = CV_{IN}$$

$$Q_{CF} = C_F V_{OUT}$$

$$Q_{CF} = -Q_{\phi 1}$$

$$\frac{V_{OUT}}{V_{IN}} = -\frac{C}{C_F}$$

Serves as a inverting amplifier Gain can be very accurate Output valid only during Φ₂

Charge Redistribution DAC

During phase φ₁

$$Q_{SET} = V_{REF} \sum_{i=0}^{n-1} d_i 2^i C$$

During phase φ₂

Charge Q_{SET} is all transferred to C_{F}

$$Q_{CF} = V_{OUT} 2^n C$$

but

$$Q_{SET} = Q_{CF}$$

$$V_{REF} \sum_{i=0}^{n-1} d_i 2^i C = V_{OUT} 2^n C \longrightarrow V_{OUT} = V_{REF} \sum_{i=0}^{n-1} \frac{d_i}{2^{n-i}}$$

Another Redistribution DAC

During phase ϕ_1 selected switches set to V_{REF}

$$Q_{SET} = V_{REF} \sum_{i=0}^{n} d_{i}C_{i} = V_{REF} \sum_{i=0}^{n} d_{i} \frac{C}{2^{n-i}}$$

During phase ϕ_2 all switches connected to GND

Charge Q_{SET} is all redistributed among the capacitors

$$Q_{SET} = V_{OUT} \left(\sum_{i=1}^{n} C_i + C_n \right)$$
 but
$$\sum_{i=1}^{n} C_i + C_n = \left(\sum_{i=1}^{n} \frac{C}{2^i} + C_n \right) = C$$

$$Q_{SET} = V_{OUT} C$$

$$V_{REF} \sum_{i=0}^{n-1} d_i \frac{C}{2^{n-i}} = V_{OUT} C \longrightarrow V_{OUT} = V_{REF} \sum_{i=0}^{n-1} \frac{d_i}{2^{n-i}}$$

Noise in DACs

Resistors and transistors contribute device noise but what about charge redistribution DACs?

Noise in DACs

Resistors and transistors contribute device noise but what about charge redistribution DACs?

Noise in resistors:

Noise spectral density of $v_{\rm n}(t)$ at all frequencies S=4kTR

$$S = 4kTR$$

This is white noise!

k: Boltzmann's Constant

T: Temperature in Kelvin

 $k=1.38064852 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}$

At 300K, $kT=4.14 \times 10^{-21}$

Noise in DACs

Resistors and transistors contribute device noise but what about charge redistribution DACs?

Noise in linear circuits:

Due to any noise voltage source:

$$S_{_{\scriptscriptstyle VOUT}} = S_{_{\scriptscriptstyle V_{\scriptscriptstyle n}}} \left| T\left(j\omega
ight) \right|^2$$

$$oldsymbol{v}_{\scriptscriptstyle OUT_{\scriptscriptstyle RMS}} = \sqrt{\int\limits_{
m f=0}^{\infty} S_{\scriptscriptstyle Vout}} {
m df} = \sqrt{\int\limits_{f=0}^{\infty} S_{\scriptscriptstyle V_{\scriptscriptstyle n}} \left| T\left(j\omega
ight)
ight|^2 {
m df}}$$

Example: First-Order RC Network

$$\mathsf{T}(s) = \frac{1}{1 + \mathsf{RCs}}$$

$$S_{vout} = 4kTR \left(\frac{1}{1 + (RC\omega)^2} \right)$$

$$\mathbf{v}_{n_{RMS}} = \sqrt{\int_{f=0}^{\infty} S_{vour} df} = \sqrt{\int_{f=0}^{\infty} \frac{4kTR}{1 + \omega^{2}R^{2}C^{2}}} df$$

Example: First-Order RC Network

From a standard change of variable with a trig identity, it follows that

$$oldsymbol{v}_{\scriptscriptstyle n_{\scriptscriptstyle RMS}} = \sqrt{\int\limits_{\scriptscriptstyle \mathsf{f}=0}^{\infty} S_{\scriptscriptstyle \scriptscriptstyle VOUT}} \mathsf{df} = \sqrt{rac{\mathsf{kT}}{\mathsf{C}}}$$

- The continuous-time noise voltage has an RMS value that is independent of R
- Noise contributed by the resistor is dependent only upon the capacitor value C
- This is often referred to at kT/C noise and it can be decreased at a given T only by increasing C

"kT/C" Noise at T=300K

"kT/C" Noise at T=300K

 $v_{\rm n}({
m mT})$ is a discrete-time sequence obtained by sampling continuous-time noise waveform

Characterization of a noise sequence

$$\hat{\boldsymbol{v}}_{\scriptscriptstyle{\mathsf{RMS}}} = E \left(\sqrt{\lim_{\scriptscriptstyle{N \to \infty}}} \left(\frac{1}{\mathsf{N}} \sum_{\scriptscriptstyle{m=1}}^{\scriptscriptstyle{N}} \boldsymbol{v}^{\scriptscriptstyle{2}} \left(\mathsf{mT}\right) \right) \right) \underset{\scriptscriptstyle{N \, \mathsf{larg}_{e}}}{\simeq} \sqrt{\frac{1}{\mathsf{N}} \sum_{\scriptscriptstyle{m=1}}^{\scriptscriptstyle{N}} \boldsymbol{v}^{\scriptscriptstyle{2}} \left(\mathsf{mT}\right)}$$

Theorem If v(t) is a continuous-time zero-mean noise source and v(kT) is a sampled version of v(t) sampled at times t, t, t, t, then the RMS value of the continuous-time waveform is the same as that of the sampled version of the waveform. This can be expressed as $v_{t} = \hat{v}_{t}$

Theorem If v(t) is a continuous-time zero-mean noise signal and v(t) is a sampled version of v(t) sampled at times T, 2T, then the standard deviation of the random variable v(t), denoted as σ_{v} satisfies the expression $\sigma_{v} = v(t)$

$$v_{n_{RMS}} = \sqrt{\frac{\mathsf{kT}}{\mathsf{C}}}$$

k: Boltzmann's constantT: temperature in Kelvin

End of Lecture 18