EE 505

Lecture 18

Dynamic Current Source Matching Charge Redistribution DACs

Review from Last Lecture

Current Steering DAC

Sub-radix Array

Termination resistor must be selected so that same attenuation is maintained Often only the first n_{1} MSB "slices" will be sub-radix

Effective number of bits when using sub-radix array will be less than k
Can be calibrated to obtain very low DNL (and maybe INL) with small area

Review from Last Lecture

Current Steering DAC

Review from Last Lecture

Current Steering DAC

${ }^{\text {Reviecuecurn }}$ furrent Steering DAC with Supply Independent Biasing

If transistors on top row are all matched, $\mathrm{I}_{\mathrm{X}}=\mathrm{V}_{\mathrm{REF}} / \mathrm{R}$
Thermometer coded structure (requires binary to thermometer decoder)

$$
\mathrm{I}_{\mathrm{A}}=\left(\frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{R}}\right) \sum_{\mathrm{i}=0}^{\mathrm{N}-1} \mathrm{~d}_{\mathrm{i}}
$$

Provides Differential Output Currents

Current Current Steering DAC with Supply Independent Biasing

If transistors on top row are binary weighted

$$
\mathrm{I}_{\mathrm{A}}=\left(\frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{R}}\right) \sum_{\mathrm{i}=0}^{\mathrm{n}-1} \frac{\mathrm{~d}_{\mathrm{i}}}{2^{\mathrm{n}-\mathrm{i}}}
$$

Provides Differential Output Currents

Current Steering DAC with current output, buffered output, resistor load

Matching is Critical in all DAC Considered

Obtaining adequate matching remains one of the major challenges facing the designer!

Dynamic Current Source Matching

- Correct charge is stored on C to make all currents equal to $I_{\text {REF }}$
- Does not require matching of transistors or capacitors
- Requires refreshing to keep charge on C
- Form of self-calibration
- Calibrates current sources one at a time
- Current source unavailable for use while calibrating
- Can be directly used in DACs (thermometer or binary coded)
- Still use steering rather than switching in DAC

Often termed "Current Copier" or "Current Replication" circuit

Dynamic Current Source Matching

Extra current source can be added to facilitate background calibration

Charge Redistribution Principle

$$
\sum_{i=1}^{k} C_{i}\left(V_{k}-V_{x}\right)=Q_{x}
$$

Charge on capacitors is preserved if there is no loss element on any of the capacitors

$$
\sum_{i=1}^{k} C_{i} V_{i}-V_{x} \sum_{i=1}^{k} C_{i}=Q_{x}
$$

Thus for any time-dependent voltages $\mathrm{V}_{1}, \ldots \mathrm{~V}_{\mathrm{k}}$

$$
V_{x}=\frac{\sum_{i=1}^{k} C_{i} V_{i}-Q_{X}}{\sum_{i=1}^{k} C_{i}}
$$

Charge Redistribution Principle

$$
V_{x}=\frac{\sum_{i=1}^{k} C_{i} V_{i}-Q_{X}}{\sum_{i=1}^{k} C_{i}}
$$

All capacitors will have some gradual leakage thus causing Q_{T} to change
How long will charge on a simple $\mathrm{M}-\mathrm{SiO}_{2}-\mathrm{M}$ capacitor be retained in a standard semiconductor process?

DAC Architectures

During phase $\varphi_{1}, \mathrm{C}_{\mathrm{F}}$ is discharged and the remaining capacitors are charged to either $\mathrm{V}_{\text {REF }}$ or OV depending upon Boolean input total charge is denoted as $Q_{\text {SET }}$

During phase φ_{2}, all charge on input-connected capacitors is transferred to C_{F}

DAC output voltage is $V_{\text {out }}=\frac{Q_{S E T}}{C_{F}}$

DAC Architectures

During phase φ_{2}, the previous output voltage is sampled on C_{X}

During phase φ_{1}, the Op Amp has feedback through C_{x} thus establishing a null-port at the input so voltage on selected sampling capacitors is $\mathrm{V}_{\mathrm{REF}}$
C_{x} does some good things
(mitigates V_{OS}, $1 / \mathrm{f}$ noise and finite gain errors)

Consider basic charge redistribution circuit

Clocks are complimentary non-overlapping

Basic charge redistribution circuit

During phase φ_{1}

$$
\begin{aligned}
& \mathrm{Q}_{\phi 1}=\mathrm{CV}_{\mathrm{IN}} \\
& \mathrm{Q}_{\mathrm{CF}}=0
\end{aligned}
$$

During phase φ_{2}

$$
\begin{aligned}
& \frac{\mathrm{Q}_{\phi 1}}{\mathrm{C}_{\mathrm{F}}}=\mathrm{V}_{\mathrm{OUT}} \\
& \frac{\mathrm{CV}_{\mathrm{IN}}}{\mathrm{C}_{\mathrm{F}}}=\mathrm{V}_{\mathrm{OUT}} \\
& \frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}=\frac{\mathrm{C}}{\mathrm{C}_{\mathrm{F}}}
\end{aligned}
$$

Serves as a noninverting amplifier
Gain can be very accurate
Output valid only during Φ_{2}

Another charge redistribution circuit

Another charge redistribution circuit

During phase φ_{1}

$$
\begin{aligned}
& \mathrm{Q}_{\phi 1}=\mathrm{CV}_{\mathrm{IN}} \\
& \mathrm{Q}_{\mathrm{CF}}=0
\end{aligned}
$$

During phase φ_{2}

$$
\begin{aligned}
\frac{-\mathrm{Q}_{\phi 1}}{\mathrm{C}_{\mathrm{F}}} & =\mathrm{V}_{\mathrm{OUT}} \\
\frac{-\mathrm{CV}_{\mathrm{IN}}}{\mathrm{C}_{\mathrm{F}}} & =\mathrm{V}_{\mathrm{OUT}} \\
\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}} & =-\frac{\mathrm{C}}{\mathrm{C}_{\mathrm{F}}}
\end{aligned}
$$

Serves as a noninverting amplifier
Gain can be very accurate
Output valid only during Φ_{2}

Another charge redistribution circuit

Another charge redistribution circuit

During phase φ_{1}

$$
\begin{aligned}
& \mathrm{Q}_{\phi 1}=0 \\
& \mathrm{Q}_{\mathrm{CF}}=0
\end{aligned}
$$

During phase φ_{2}

$$
\begin{aligned}
\mathrm{Q}_{\phi 2} & =\mathrm{CV}_{\mathrm{IN}} \\
\mathrm{Q}_{\mathrm{CF}} & =\mathrm{C}_{\mathrm{F}} \mathrm{~V}_{\mathrm{OUT}} \\
\mathrm{Q}_{\mathrm{CF}} & =-\mathrm{Q}_{\phi \phi}
\end{aligned}
$$

$$
\frac{\mathrm{v}_{\text {OUT }}}{v_{\text {IN }}}=-\frac{\mathrm{C}}{\mathrm{C}_{\mathrm{F}}}
$$

Serves as a inverting amplifier Gain can be very accurate Output valid only during Φ_{2}

Charge Redistribution DAC

During phase φ_{1}

$$
Q_{S E T}=V_{R E F} \sum_{i=0}^{n-1} d_{i} 2^{i} C
$$

During phase φ_{2}
Charge $\mathrm{Q}_{\text {SET }}$ is all transferred to C_{F}

$$
Q_{C F}=V_{\text {OUT }} 2^{n} C
$$

but

$$
Q_{S E T}=Q_{C F}
$$

$V_{\text {REF }} \sum_{i=0}^{n-1} d_{i} 2^{i} C=V_{\text {OUT }} 2^{n} C \longrightarrow V_{\text {OUT }}=V_{\text {REF }} \sum_{i=0}^{n-1} \frac{d_{i}}{2^{n-i}}$

Another Redistribution DAC

During phase φ_{1} selected switches set to $\mathrm{V}_{\text {REF }}$

$$
Q_{S E T}=V_{\text {REF }} \sum_{i=0}^{n} d_{i} C_{i}=V_{\text {REF }} \sum_{i=0}^{n} d_{i} \frac{C}{2^{n-i}}
$$

During phase φ_{2} all switches connected to GND
Charge $\mathrm{Q}_{\text {SET }}$ is all redistributed among the capacitors

$$
\begin{gathered}
Q_{\text {SET }}=V_{\text {OUT }}\left(\sum_{i=1}^{n} C_{i}+C_{n}\right) \\
\text { but } \quad \sum_{i=1}^{n} C_{i}+C_{n}=\left(\sum_{i=1}^{n} \frac{C}{2^{i}}+C_{n}\right)=C \\
Q_{\text {SET }}=V_{\text {OUT }} C
\end{gathered}
$$

Noise in DACs

Resistors and transistors contribute device noise but what about charge redistribution DACs?

Noise in DACs

Resistors and transistors contribute device noise but what about charge redistribution DACs ?

Noise in resistors:

Noise spectral density of $v_{\mathrm{n}}(\mathrm{t})$ at all frequencies $\quad S=4 k T R$
This is white noise!
k: Boltzmann's Constant
T: Temperature in Kelvin
$\mathrm{k}=1.38064852 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
At $300 \mathrm{~K}, \mathrm{kT}=4.14 \times 10^{-21}$

Noise in DACs

Resistors and transistors contribute device noise but what about charge redistribution DACs ?

Noise in linear circuits:

Due to any noise voltage source:

$$
\begin{gathered}
S_{v o r}=S_{v r}|T(j \omega)|^{2} \\
V_{v t_{t r e m}}=\sqrt{\int_{i=0}^{\infty} S_{v w n} \mathrm{df}}=\sqrt{\int_{f=0}^{\infty} S_{v .}|T(j \omega)|^{2} \mathrm{df}}
\end{gathered}
$$

Example: First-Order RC Network

$$
\mathrm{T}(s)=\frac{1}{1+\mathrm{RCs}}
$$

$$
\begin{array}{r}
S_{\text {voor }}=4 \mathrm{kTR}\left(\frac{1}{1+(\mathrm{RC} \omega)^{2}}\right) \\
V_{\text {mout }}=\sqrt{\int_{i=0}^{\infty} S_{\text {von }} \mathrm{df}}=\sqrt{\int_{f=0}^{\infty} \frac{4 \mathrm{kTR}}{1+\omega^{2} \mathrm{R}^{2} \mathrm{C}^{2}} \mathrm{df}}
\end{array}
$$

Example: First-Order RC Network

$$
V_{w=}=\sqrt{\int_{i=0} S_{w e x} \mathrm{df}}=\sqrt{\int_{f=0}^{\infty} \frac{4 \mathrm{kTR}}{1+\omega^{2} \mathrm{R}^{2} \mathrm{C}^{2}} \mathrm{df}}
$$

From a standard change of variable with a trig identity, it follows that

$$
\boldsymbol{V}_{v a n}=\sqrt{\int_{i=0}^{\infty} S_{v a n} \text { df }}=\sqrt{\frac{\mathrm{KT}}{\mathrm{C}}}
$$

- The continuous-time noise voltage has an RMS value that is independent of R
- Noise contributed by the resistor is dependent only upon the capacitor value C
- This is often referred to at kT / C noise and it can be decreased at a given T only by increasing C

"kT/C" Noise at T=300K

"kT/C" Noise at T=300K

Example: Switched Capacitor Sampler

Track mode

Hold mode

Example: Switched Capacitor Sampler

Track mode

Hold mode

Example: Switched Capacitor Sampler

T is the period of the sampler

$\boldsymbol{v}_{\mathrm{n}}(\mathrm{mT})$ is a discrete-time sequence obtained by sampling continuous-time noise waveform

Characterization of a noise sequence

Theorem If $\boldsymbol{v}(\mathrm{t})$ is a continuous-time zero-mean noise source and $\langle\boldsymbol{V}(\mathrm{kT})\rangle$ is a sampled version of $\mathcal{V}(\mathrm{t})$ sampled at times $\mathrm{T}, 2 \mathrm{~T}, \ldots$. then the RMS value of the continuous-time waveform is the same as that of the sampled version of the waveform. This can be expressed as $\boldsymbol{V}_{\text {ews }}=\hat{V}_{\text {vus }}$

Theorem
If $v(\mathrm{t})$ is a continuous-time zero-mean noise signal and $<\boldsymbol{V}(\mathrm{kT})>$ is a sampled version of $\boldsymbol{v}(\mathrm{t})$ sampled at times $\mathrm{T}, 2 \mathrm{~T}, \ldots$. then the standard deviation of the random variable $\mathcal{V}(\mathrm{kT})$, denoted as σ_{i}
satisfies the expression $\sigma_{V}=V_{\text {pus }}=\hat{V_{\text {RII }}}$

Example: Switched Capacitor Sampler

$v_{\text {vem }}=\sqrt{\frac{k T}{C}}$
k: Boltzmann's constant T: temperature in Kelvin

End of Lecture 18

